Was ist der Unterschied zwischen Hadoop und Spark? - Unterschied Zwischen

Was ist der Unterschied zwischen Hadoop und Spark?

Das Hauptunterschied zwischen Hadoop und Spark ist das der Hadoop ist ein Open-Source-Framework von Apache, das die verteilte Verarbeitung großer Datenmengen über mehrere Computercluster mit einfachen Programmiermodellen ermöglicht, während Spark ein Cluster-Computing-Framework ist, das für die schnelle Hadoop-Berechnung entwickelt wurde.

Big Data bezieht sich auf das Sammeln von Daten, die ein enormes Volumen, Geschwindigkeit und Vielfalt aufweisen. Daher ist es nicht möglich, herkömmliche Datenspeicherungs- und -verarbeitungsmethoden zum Analysieren großer Datenmengen zu verwenden. Hadoop ist eine Software, um Big Data effektiv und effizient zu speichern und zu verarbeiten. Spark hingegen ist ein Apache-Framework, um die Rechengeschwindigkeit von Hadoop zu erhöhen. Es kann sowohl Batch- als auch Echtzeit-Analyse- und Datenverarbeitungs-Workloads verarbeiten.

Wichtige Bereiche

1. Was ist Hadoop?
- Definition, Funktionalität
2. Was ist Spark?
- Definition, Funktionalität
3. Was ist der Unterschied zwischen Hadoop und Spark?
- Vergleich der wichtigsten Unterschiede

Schlüsselbegriffe

Big Data, Hadoop, Spark


Was ist Hadoop?

Hadoop ist ein Open Source Framework, das von der Apache Software Foundation entwickelt wurde. Es wird verwendet, um Big Data in einer verteilten Umgebung zu speichern, um sie gleichzeitig zu verarbeiten. Außerdem bietet es verteilten Speicher und Berechnungen für mehrere Computercluster. Darüber hinaus gibt es vier Hauptkomponenten in der Hadoop-Architektur. Sie sind; Verteiltes Hadoop-Dateisystem (HDFS), Hadoop MapReduce, Hadoop Common und Hadoop YARN.


HDFS ist das Hadoop-Speichersystem. Es arbeitet nach der Master-Slave-Architektur. Der Master-Knoten verwaltet die Dateisystem-Metadaten. Die anderen Computer arbeiten als Slave-Knoten oder Datenknoten. Die Daten werden auch auf diese Datenknoten aufgeteilt. Ebenso enthält Hadoop MapReduce den Algorithmus zur Verarbeitung von Daten. Hier führt der Masterknoten Map-Reduction-Jobs auf Slave-Knoten aus. Der Slave-Knoten führt die Aufgaben aus und sendet die Ergebnisse an den Master-Knoten zurück. Darüber hinaus bietet Hadoop Common Java-Bibliotheken und Dienstprogramme zur Unterstützung der anderen Komponenten. Andererseits führt der Hadoop YARN Cluster-Ressourcen-Management und Job-Scheduling durch.

Was ist Spark?

Spark ist ein Apache-Framework zur Erhöhung der Rechengeschwindigkeit von Hadoop. Es hilft Hadoop, die Wartezeit zwischen Abfragen und die Wartezeit für die Ausführung des Programms zu reduzieren.


Spark SQL, Spark Streaming, MLib, GraphX ​​und Apache Spark Core sind die Hauptkomponenten von Spark.

Spark-Kern - Alle Funktionen basieren auf Spark Core. Es ist die allgemeine Ausführungsmaschine für die Funkenplattform. Es bietet In-Memory-Computing und Referenzierung von Datensätzen in externen Speichersystemen.

Spark SQL - Stellt SchemaRDD bereit, das strukturierte und halbstrukturierte Daten unterstützt.

Spark-Streaming - Bietet Funktionen zum Durchführen von Streaming-Analysen.

MLib - Ein verteiltes Machine Learning Framework. Spark MLib ist schneller als eine Hadoop-basierte Version von Apache Mahout.

GraphX - Ein verteiltes Diagrammverarbeitungsframework. Es bietet eine API zum Ausdruck der Graphberechnung, mit der die benutzerdefinierten Graphen mithilfe der Pregel-Abstraktions-API modelliert werden können.

Unterschied zwischen Hadoop und Spark

Definition

Hadoop ist ein Open-Source-Framework von Apache, das die verteilte Verarbeitung großer Datenmengen über Cluster von Computern mit einfachen Programmiermodellen ermöglicht. Apache Spark ist ein verteiltes, allgemeines Cluster-Computing-Framework für Open Source. Dies erklärt den Hauptunterschied zwischen Hadoop und Spark.

Geschwindigkeit

Geschwindigkeit ist ein weiterer Unterschied zwischen Hadoop und Spark. Spark ist schneller als Hadoop.

Fehlertoleranz

Hadoop verwendet die Replikation von Daten in mehreren Kopien, um Fehlertoleranz zu erreichen. Spark verwendet RDD (Resilient Distributed Dataset) zur Fehlertoleranz.

API

Ein weiterer Unterschied zwischen Hadoop und Spark besteht darin, dass der Spark eine Vielzahl von APIs bietet, die mit mehreren Datenquellen und Sprachen verwendet werden können. Sie sind außerdem erweiterbarer als Hadoop-APIs.

Verwendungszweck

Mit Hadoop wird das Speichern und Verarbeiten von Daten von Big Data-Anwendungen in Clustersystemen verwaltet. Spark wird zur Beschleunigung des Hadoop-Berechnungsprozesses verwendet. Daher ist dies auch ein wichtiger Unterschied zwischen Hadoop und Spark.

Fazit

Fazit: Der Unterschied zwischen Hadoop und Spark besteht darin, dass Hadoop ein Apache-Open-Source-Framework ist, das die verteilte Verarbeitung großer Datenmengen über Cluster von Computern mit einfachen Programmiermodellen ermöglicht, während Spark ein Cluster-Computing-Framework ist, das für die schnelle Hadoop-Berechnung konzipiert ist. Beide können für Anwendungen verwendet werden, die auf Predictive Analytics, Data Mining, Machine Learning und vielen mehr basieren.

Referenz:

1. "Hadoop - Einführung in Hadoop". Www.tutorialspoint.com, Tutorials Point,